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Abstract

The modeling of carbon nanotube-metal contacts is important from both
basic and applied view points. For many applications, it is important to design
contacts such that the transmission is dictated by intrinsic properties of the
nanotube rather than by details of the contact. In this paper, we calculate the
electron transmission probability from a nanotube to a free electron metal,
which is side-contacted. If the metal-nanotube interface is sufficiently ordered,
we find that k-vector conservation plays an important role in determining the
coupling, with the physics depending on the area of contact, tube diameter
and chirality. The main results of this paper are: (i) conductance scales with
contact length, a phenomena that has been observed in experiments and (ii)
in the case of uniform coupling between metal and nanotube, the threshold
value of the metal Fermi wave vector (below which coupling is insignificant)
depends on chirality. Disorder and small phase coherence length relax the

need for k-vector conservation, thereby making the coupling stronger.
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Introduction: Carbon nanotubes represent an intriguing new material that has at-
tracted much attention both from theorists and experimentalists since the early 1990s.}
Particularly exciting is the possibility of one dimensional metallic conductors at room tem-
perature that can be used as a probe in scanning probe microscopy or as a low resistance
ballistic interconnect for electron devices.?”* From a more basic point of view, much can
be learnt about the physics of conduction by studying the conductance of such a one di-
mensional conductor at low temperatures. To exploit these possibilities it is important to
understand the physics of the nanotube-metal contacts and to experimentally demonstrate
low resistance contacts in a reproducible manner. The contact between carbon nanotubes
and metal can occur at the end of the tube (end-contact)®® and along the circumference of
the tube (side-contact)>™®. The low contact resistance in Refs. 5 and 6 are due to strong
interaction between metal and carbon atoms at the end of the nanotube, or/and due to lack
of tranlational symmetry.® From a more basic view point, transport through end-contacted
nanotubes with caps show interesting effects due to localized states.!® In comparison, the
interaction between metal and carbon atoms in side-contaced nanotubes is weak. The metal
can make contact to carbon atoms located either over a sector? or the entire circumference
of the nanotube.®

Recently, Tersoff in a perceptive paper® qualitatively discussed the importance of k-vector
‘conservation in nanotube transport experiments. For free electron like metal contacts, the
important physical quantities are the diameter and chirality of the nanotube, Fermi wave
vector of the metal, arca of contact, and details of the metal-nanotube contact. In this
paper, we study the physics of side-contacted nanotube-metal contacts relevant to these
experiments®® along the lines of Ref. 9 by addressing how these physical quantities affect
the transmission of electrons from the nanotube to the metal contact. For small diameter
nanotubes, our conclusions do not fully agree with Ref. 9. Our calculations also show that the
condutance scales with contact length, a phenomena that has been observed experimentally
in references 2 and 8. In the remainder of the paper, we first discuss the salient results using

simple arguments. We then present results from numerical calculations to support thesc

1-2



arguments.

Basic idea: The first Brillouin zone of graphene touches the Fermi surface at six points.
Of these only two points are inequivalent (that is, do not differ by a reciprocal lattice vector).
The conduction properties of graphite at low bias are controlled by the nature of eigen states
around these points. Consider a metal making uniform contact to graphene. The in-plane
wave vector should be conserved when an electron tunnels from the metal to the nanotube.
As a result, for good coupling between metal and graphene, the metal Fermi wave vector
should be comparable to 47 /3ag, which corresponds to the Fermi wave vector of graphene.
ap is the lattice vector length of graphene. |

To discuss the case of nanotubes making contact to metal, we consider the scattering

rate (1/7._) from the metal to nanotube within the Born approximation,
1/"—C—"l a< ‘I’CIHC—"lilP"l > bl (1)

where, U,, (¥.) is the metal (nanotube) wave function and Hc_, represents the nanotube-
metal coupling. The wave function of an (n,m) nanotube is, ¥ = etkrug  where k, is the
axial wave vector, u is the 1D unit cell length, p is an integer representing the various unit
cells and ¢, is a vector representing the wave function of all atoms in a unit cell. It is
assumed that the wave function of the metal is separable in the axial and radial directions
of the nanotube, |¥,, >= e*"P*|¢,, >, where k,, is the metal wave vector component along

the nanotube axis. When the coupling between the nanotube and metal is uniform, the

scattering rate is [BEq. (1)},
1/7'.:4711 X teem < ¢cl¢m > Zei(km—kg)pu ) (2)
P

where, the summation is performed over all unit cells making contact to metal and (e
represents a uniform coupling constant between the metal and nanotube. It is clear from
Eq. (2) that provided the metal and nanotube make contact over several unit cells, wave
vector conservation along the axial direction is enforced as 3., eilkm—kdpe o Sk, — k).

The axial wave vector corresponding to E = 0 are 27/3ao and 0 for armchair and zigzag
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tubes respectively, and the wave vector for other chiralities varies between these two limits.
As a result, the threshold value of Fermi wave vector below which coupling between an
armchair (zigzag) nanotube and metal is poor is 27/3ag (0). The threshold value of the
metal Fermi wave vector for chiral tubes is in between that of zigzag and armchair tubes.
As the diameter of the nanotube increases, wave vector conservation along the cirumference
also becomes important, as the strip approaches a graphene sheet.

Method: The method used to calculate transmission is the same as that in reference
4, with the only addition being the connection of a metal contact.!! The metal contact has
a rectangular cross section and is infinite in the third dimension [Fig. 1]. Such a geometry
is similar to the experimental set up in reference 2. A perfectly cylindrical nanotube would
touch the metal surface only along a line. To simplify modeling this interface, we stretch the
entire circumference of the nanotube over the metal surface. The surface Green’s function
of the metal is calculated within the free electron approximation using standard procedures
and the strength of the nanotube-metal coupling used are given in Table 1. The transmission
and local density of states are calculated in a structure that can be conceptually divided into
four parts: section of the nanotube (D), which lies on the metal electrode (M), semi-infinite

regions of the nanotube L and R [Fig. 1. The Hamiltonian of the system can be written as,

H=H.+H,, + H._,, and (3)

HCZHD+HL+HR+HLD+HRD (4)

where, H, is the pi-electron tight binding Hamiltonian of the nanotube. H;p and Hgp
are terms in the Hamiltonian coupling D to L and R respectively. H,, and H._,, are the
free particle and nanotube-metal coupling terms of the Hamiltonian. The Green’s function
G is obtained by solving: [F — Hp — 5, — £ — E0]G'(E) = I, where the sell energy
Yo =2Vl g7 Vo (@ € L, R and M). g, is the surface Green’s function of terminal . The

transmission probability [T,g| is given by,
T.s(E) = Trace[To(E)GT(E)T5(E)G*(E)] , (5)
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where, o and 3 represent two different terminals across which transmission is calculated
and T = 2V I'm[gh] Va is the coupling to terminal . Finally, this is a non self-consistent
calculation.

Results and Discussion: We first present results for dependence of the threshold value
of the metal Fermi wave vector on chirality, using armchair and zigzag tubes connected to the
metal contact. We then discuss the dependence of the diameter dependence of conductance
using the case of a zigzag tube as an example. Finally, the case of disorder in coupling
between the nanotube and metal is considered. We consider only weak coupling between
the nanotube and metal. The average value of the diagonal elements of the coupling strength
T, are tabulated in Table 1 for the various values of the metal Fermi wave vector considered.
We calculate the transmission versus contact length between nanotube and metal for various
Fermi wave vectors in the metal and all atoms around the circumference of the tube are
assumed to make uniform contact with the metal. We emphasize that our results are also
fully valid in the case where only a sector of atoms along the cirumference of the nanotube
make contact to the metal such as in Ref. 2.

In the case of armchair tubes, when the metal Fermi wave vector k; is smaller than 27 /3aq
(0.85.471), Tys1 does not change significantly with contact length as shown for k; = 0.75A471
in Fig. 2(a). For values of k; above the threshold, the transmission monotonously increases
with an increase in contact length. The monotonic increase is due to weak metal-nanotube
coupling, in which case an increasc in contact length simply results in an increase in the
transition probability to scatter from metal to nanotube.'2 The transmission will eventually
saturate with increase in contact length as there are only two conducting modes at the band
center. For the configuration considered [Fig. 1], Tas can have a maximum value of unity.
The second feature of Fig. 2(a) is the increase in transmission with increase in ky. This can
be understood by noting that electrons with a wave vector component along the nanotube
axis that is larger than 2m/3qg scatter from the metal to nanotube, and a larger k; implies
a large number of available metal electron states. For the purpose of these calculations, we

considered a (2,2) armchair tube; The essential physics would in principle be true for the
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more realistic (10,10) nanotube also.

The case of zigzag tubes is different because bands at £ = 0 cross at k = 0. Then,
electrons in the metal electrode with any k; (no threshold) can scatter into a metallic
zigzag tube. The results for a (3,0) tube are shown in Fig. 2(b). Here, there are two
important points. The first point is that as there is no threshold metal Fermi wave vector,
the transmission increases monotonically with contact length even for ky = 0.4471. The
second point is that the transmission for ks equal to 0.75A7" and 1.2A! are much smaller
than that for armchair tubes [Fig. 2(a)]. The is because the nanotube wave vector around
the circumference (k) of a zigzag tube is large, k. = 47 /3ao for the crossing bands and this
has the effect of making the overlap integral [Eq. (1)] small at E=0. As k; = 1.75A7" is
larger than the threshold for graphite, the transmission probability is larger, and comparable
to that for armchair tubes [Fig. 2(b)].

What happens when the diameter increases? In the limit of large diameter, a nanotube
is akin to graphene and the threshold &y to couple well with metal should approach 47 /3a,.
Numerically, it is difficult to simulate a large diameter tube due to problems associated with
the time and memory required to calculate gj,. So we instead compare a zigzag tube of
two diameters to convey this point. Fig. 3 compares the transmission versus contact length
of the (3,0) and (6,0) nanotubes; The (6,0) nanotube has double the diameter of the (3,0)
nanotube. The (6,0) correspondingly has a smaller transmission and the trend of decrease
in transmission will continue with further increase in diameter. Infact for large diameters,
as the diameter increases the threshold value of kg is expected to change to 17 /3ap in a
manner that depends inversely on the nanotube diameter.

We now address the role of disorder. Disorder in either the nanotube, metal or nanotube-
metal coupling will in general result in larger transmission when compared to the disorder-
free case. Wave vector conservation is relaxed due to scattering from defects and transmission
will increase with increase in contact length even when the metal ky is below the threshold
value. We consider the case of disorder in nanotube-metal coupling (He-.). Disorder in all

elements of the coupling between the nanotube and metal was introduced randomly. The
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disorder in coupling of atom i to the metal contact can be written as, ¢; = at® +(1—-a)tred,

where % is the average value of ¢; over all sites connected to the metal and « is a fraction
between zero and unity. {7°™ is the random component whose average 1s equal to t*¥. In Fig.
2(b), the two strengths of disorder correspond to & = 0 and = 0.5 (smaller o corresponds
to larger disorder), such that ¢t® has the same value as that in Fig. 2(a). For an armchair
tube in contact with a metal with k; = 0.75A7!, the transmission was very small and more
importantly did not vary with contact length [Fig. 2(a)]. Introducing disorder changes
this trend and causes a monotonic increase in transmission with length of contact [Fig. 4].
Similarly, for large diameter tubes, in the presence of disorder there should be significant
transmission when k; is smaller than the threshold 47 /3ag. The requirement of wave vector
conservation is also relaxed when the phase coherence length is small. So we expect the
coupling to improve with decrease in phase coherence length.

Conclusions: In this paper, we addressed some aspects of the physics of a nanotube
side-contacted to metal, a problem of current importance. The main result is that cou-
pling of carbon nanotubes to metal depends on both chirality and diameter. Wave vector
conservation of an electron scattered from the nanotube to metal plays a central role in
determining the properties. The difference between small and large diameter nanotubes is
that while in the former wave vector conservation is important only in the axial direction, in
the latter it is important in both the axial and circumferential directions. As a result, small
diameter armchair and zigzag tubes have a cut-off value of the metal Fermi wave vector
equal to 27 /3a, and zero, respectively. For chiral tubes, the cut-oflf value of the metal Fermi
wave vector lies in between these two limits, with the value decreasing with increase in chiral
angle. A large diameter nanotube is akin to a graphene sheet and the cut-off value of the
metal Fermi wave vector in this case approaches 47 /3o with increase in diameter. Disorder
in the metal, nanotube or their coupling relaxes the requirement of k-vector conservation
and in general improves coupling. The groups of references 2 and 8 have shown increase
in conductance with contact length. In this paper, we discussed two situations that could

lead to this. The first situation requires the metal Fermi wave vector to be larger than the
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threshold discussed and holds even when there is no disorder. The second situation requires

disorder in coupling to the metal but there is no restriction on the value of the Fermi wave

vector.
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increase in contact length will not result in a monotonic increases in transmission with

contact length.
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FIGURES

Fig. 1: A metal making contact to a nanotube. The (z,z) dimensions of the metal form a

rectangular cross section with lengths (Ls, L,). The y direction is infinitely long.
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Fig. 2: Transmission probability for (a) armchair and (b) zigzag tubes versus contact length
in number of unit cells of the nanotube. (a) The main point here is that for the metal Fermi wave
vector smaller than the threshold 27/3ag, coupling between the nanotube and metal is small and
increasing the contact length does not change the transmission probability. For metal Fermi wave
vector larger than 2m/3ag, the transmission probability increases with increase in contact length
and also with increase in k; for a given contact length. (b) The main point here is that .there is
no threshold in the metal Fermi wave vector. Even in the case of a small value of the metal Fermi
wave vector (0.4A71), the transmission increases with increase in the contact length, albeit _the
magnitude of transmission is small. As in the armchair case, the transmission probability increases
with increase in ks for a given contact length. The kf = 0.4,0.75 and 1.2A values of Ty, have

been multiplied by ten times their real values.
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Fig. 3: Comparison of transmission probability of (3,0) and (6,0) nanotubes versus contact
length in number of unit cells of the nanotube. The transmission probability decreases with in-
crease in diameter and for a very large diameter tube (akin to a graphene sheet), the transmission

probability will be appreciable only when the metal Fermi wave vector is larger than 47 /3ao.
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Fig. 4: Comparison of transmission probability versus contact length for a (2,2) armchair tube,
with and without disorder in nanotube-metal coupling. The metal Fermi wave vector is 0.75A 1.
Note that for the case without disorder, the transmission is poor and increasing the contact length
does not help. Introducing disorder changes this picture and the transmission begins to increase

with increase in contact length because k-vector conservation is relaxed.
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